
EEXTENDINGXTENDING  POSSIBILITIESPOSSIBILITIES  OFOF  DEVELOPERSDEVELOPERS  
ININ  LARGELARGE  BUSINESSBUSINESS  APPLICATIONSAPPLICATIONS  

BYBY  INTEGRATINGINTEGRATING  
VVAADINAADIN  FRAMEWORKFRAMEWORK

Michał Szczygieł

Bachelor’s Thesis
May 2013

Degree Programme in Information Technology



DESCRIPTION

Author
SZCZYGIEŁ Michał Piotr

Type of publication
Bachelor´s Thesis

Date
15/05/2013

Pages 
48

Language
English

Confidential

(   ) Until 

Permission for web 
publication
( X )

Title
EXTENDING POSSIBILITIES OF DEVELOPERS IN LARGE BUSINESS 
APPLICATIONS BY INTEGRATING VAADIN FRAMEWORK

Degree Programme
Information Technology

Tutor
PELTOMÄKI Juha

Assigned by
Descom Oy

Abstract
The purpose of this bachelor’s thesis was to introduce Vaadin framework to for an 
existing Java EE project incorporating Spring MVC technology. This thesis was 
connected with a 4 month internship at Descom company, during which the 
developer team decided to introduce the said framework.

The aim of this thesis was to facilitate the creation of new features and, at the same
time, save developers' effort. The introduction of this framework is expected to 
accelerate application development while maintaining high quality of both source 
code and functionality accessible to end-users. 

This thesis provides information on both the theoretical for the entire project, as 
well as the practical part, which allows developers to carry out such an integration. 
The examples presented in this thesis are issues that affect deep layers of the 
application. However, the whole architecture of the project and the integration 
process which has taken place in the project could not be presented due to 
confidentiality of corporate data.

In the conclusion chapter is presented prove the usefulness and benefits of 
integrating Vaadin framework inside large Java EE based business applications.

Keywords
Vaadin, Integration, Spring, JSP, Java EE

Miscellaneous



1

TABLE OF CONTENTSTABLE OF CONTENTS

1 INTRODUCTION.......................................................................................................3

2 THEORETICAL BASIS..............................................................................................4

2.1 Overview..............................................................................................................4

2.2 What is a business web application?....................................................................5

2.2 Java 5 EE and why this old one was chosen........................................................6

2.3 WebSphere Server Application v 7.0 introduction...............................................9

2.4 About frameworks used in the application.........................................................10

2.4.1 Spring.........................................................................................................11

2.4.2 Vaadin.........................................................................................................15

2.4.3 Hibernate....................................................................................................20

2.5 JSP technology...................................................................................................21

2.6 Enterprise JavaBeans.........................................................................................22

3 INTEGRATION.........................................................................................................24

3.1 Structure of existing project...............................................................................24

3.2 Structure of Vaadin framework integration........................................................25

3.3 Environment settings..........................................................................................28

3.3.1 Overview....................................................................................................28

3.3.2 Maven configuration for Vaadin integration..............................................28

3.3.3 Servlet configuration..................................................................................31

3.3.4 Class resolver implementation...................................................................33

3.3.5 Spring injection inside Vaadin framework.................................................35

3.4 Integration into Spring MVC.............................................................................37

3.5 Calling Spring pages from the Vaadin page.......................................................45

4 CONCLUSIONS.......................................................................................................46

REFERENCES.............................................................................................................48

APPENDICES .............................................................................................................49

Appendix 1: Architecture of integration Vaadin framework into Spring MVC.......49

Appendix 2: Example code of embedded Vaadin UI in JSP file..............................50

Appendix 3: Source code of EditLink class.............................................................51



2

LIST OF FIGURESLIST OF FIGURES

FIGURE 1: Java EE application execution model..........................................................7

FIGURE 2: Multitiered applications...............................................................................8

FIGURE 3: Architecture of application server...............................................................9

FIGURE 4: Spring logo................................................................................................10

FIGURE 5: Vaadin logo................................................................................................10

FIGURE 6: Hibernate logo...........................................................................................10

FIGURE 7: The Spring framework modules................................................................11

FIGURE 8: Spring MVC application layers.................................................................13

FIGURE 9: Vaadin application architecture.................................................................15

FIGURE 10: Vaadin Client-Side engine.......................................................................16

FIGURE 11: Server-Side application architecture........................................................17

FIGURE 12: Resource interface...................................................................................19

FIGURE 13: Three-layer architecture..........................................................................19

FIGURE 14: Application architecture with Hibernate API..........................................20

FIGURE 15: JSP layer separation.................................................................................21

FIGURE 16: Delegating object during EJB session.....................................................22

FIGURE 17: Listener of events in message-driven bean.............................................23

FIGURE 18: EntityManager which mapping POJO object state with persisting to 

database.........................................................................................................................23

FIGURE 19: Flow diagram in application....................................................................24

FIGURE 20: The data flow for the implementation of Vaadin.....................................25

FIGURE 21: Architecture of integration Vaadin framework into Spring MVC...........26

FIGURE 22: Example of placement embedded Vaadin page in JSP page...................26

FIGURE 23: Example of placement embedded Vaadin page in JSP page, which invoke

other pages for getting proper values............................................................................27

LIST OF TABLESLIST OF TABLES

TABLE 1: Advantages and Disadvantages of using Vaadin in the project...................46



3

1 1 INTRODUCTIONINTRODUCTION

Nowadays, more and more important for corporation businesses are solutions in 

investment areas with which customers seek competitiveness and profitability. Such 

solutions often require different sectors of activities. These sectors perform in various 

areas of their services and work in a variety of methodologies. The whole complex 

system in a company always requires integration between sectors. Integration is an 

inseparable part of many business processes, as well as is required many more abstract

things. Also, this thesis focuses on the issue of integration.

The major importance of business solutions among others are web applications. 

Why web applications, not desktop applications? Over the last few years, there is no 

difference between the limitations characterized in web applications and desktop. The 

advantages of web application are their ability to be updated and maintained without 

distributing and installing software on every customer's computer. Inherent support for

cross-platform is the main advantage of choosing this technology.

Implementing a web-based solution, even though there is a wide choice of 

development tools they often have to be limited to the constraints imposed by a 

customer. Often, many of these technologies have to use a few, however, that requires 

integration. Sometimes the integration of these tools can be made at various stages of 

application development, which is often problematic. That is the main motivation for 

the choice of the subject of this thesis: to show how to make integration for web 

development tool; what kind of benefits this integration brings into a project. The 

experience gained during the internship can touch the heart of the problem.

The main objective was to integrate the Vaadin inside an existing large web 

application, thereby extending the capabilities of developers. This procedure required 

extensive integration of both the presentation layer and the deeper-lying layers of the 

business. This junction allows developers to reduce the cost of application creation 

dedicated to the reduction of the time.



4

2 THEORETICAL BASIS2 THEORETICAL BASIS

2.1 Overview2.1 Overview

In this part of the thesis there is necessary information to understand the essence and 

structure of integration. All of these items create a single unit of the application.

2.2 What is a business web application?

2.3 Java 5 EE and why this old one

2.4 WebSphere Server Application v 7.0 introduction

2.5 About frameworks used in the application

2.6 JSP technology

2.7 Enterprise JavaBeans

The sub-chapter called “What is a business web application?” explain basic principles 

of business applications.

The next sub-chapter titled “Java 5 EE and why this old one” shows the concept of the

platform, and explains why this technology has been used at the project. 

In the following sub-chapter called “WebSphere Server Application v 7.0 

introduction” is presented using technology provided by IBM.

"About frameworks used in the application" sub-chapter contains a frameworks 

description used in the project such as Spring, Hibernate, Vaadin.

The following chapter titled “JSP technology” provides a brief introduction to this 

technology.

Finally, in the last chapter called "Enterprise JavaBeans" shows architecture for 

modular construction of enterprise applications.



5

2.2.22 What is a business web application? What is a business web application?

There is no strict definition of explaining what is a business web application and what 

standards shall be fulfilled. A business web application is nothing more than a part of 

enterprise software. 

Enterprise application software is the foundation for large corporations, and often this 

application is an integral part of all departments in the company.

Also, this software aims to improve solving the main problems for industrial 

companies by providing business logic support functionality for this product.

"Enterprise applications are about the display, manipulation, and storage of 

large amounts of often complex data and the support or automation of business

processes with that data."

(Fowler, Patterns of Enterprise Application Architecture, 2002).

This topic is very broad, therefore the remainder will refer to the project where the 

integration took place. Services provided by the project are oriented to enterprise 

application integration. The most accurate term for the operation and idea of the 

project is the term supply chain management, which describes solutions serving the 

company to manage the supply chain network. With this it is possible to synchronize 

the flow of materials between the cooperating parties. Also, this project is based on 

Java EE 1.5 and the products offered by IBM like WebSphere Application Server 7 

(WAS7).



6

2.2 2.2 Java 5 EE and why this old one was chosenJava 5 EE and why this old one was chosen

In the world of information technology, time of creating and designing new enterprise 

applications is expected to cost less money, and to be produced faster. Thus engineers 

have created a platform such as Java EE, to facilitate the work.

The Java EE platform provides a great deal of advantages for enterprise:

• Establishes standards for enterprise computing which use database connection,

enterprise business components, web-related components, message-oriented 

middleware, communication protocol and interoperability.

•  Uses open standards.

• Irrespective of the infrastructure provided by vendors' products, the time to 

market is reduced by implementation in Java EE standards.

• Promotes a standard platform for developing software components which are 

portable in vendor implementations.

• Java EE technology is based on Java language, which allows developers to 

learn fast this technology.

• Java EE provides inter-operate within existing heterogeneous environments 

(Alur, Crupi & Malks, 2003, 8)

The Java Enterprise Edition 5 (Java EE 5 also called Java EE 1.5) is server-based 

platform to write software in Java language. Java EE is an extension to the Java SE 

and it provides a powerful API for running and developing enterprise software. 

Attributes that characterize this technology are that is: scalable, transactional, 

portable; it has security, and reliable server-side applications. In order to reduce the 

effort of developers annotations support was introduced, XML deployment descriptors

are optional. Information about annotations contained in Java source files, is 

automatic executed by Java EE server during deployment and runtime.



7

Java EE 5 also provides dependency injection which can be applied to all resources. 

This approach effectively hides the creation and lookup of required resources, thus 

saving a developer effort on writing boilerplate code. Dependency injection is also 

used in EJB containers, web containers and application clients. After injection Java EE

container automatically combines references to other needed components or resources 

where annotations were used.

The JPA (Java Persistence API) is new in Java EE 5. The Java Persistence API allow 

for Object-Relational Mapping (ORM) to manage relational data in enterprise beans.

FIGURE 1 shows components of Java EE running on a single machine.

The Java EE platform based is multitier application model, where the logic of 

application is divided into components. Each part is installed on a different machine.

FIGURE 2 shows this model divided into the tiers.

• Component (client applications and applets) with client tier is running on the 

client machine.

• Component (Java Servlet, JavaServer Pages and JavaServer Faces) with web 

tier is running on the Java EE server.

FIGURE 1: Java EE application execution

model



8

• Component (Enterprise JavaBeans) with business tier is running on one the 

Java EE servers.

• Component Enterprise information system tier is running on the EIS server.

(Jendrock, Ball, Carson, Evans, Fordin & Haase, The Java EE 5 Tutorial, 2007)

It could be asked “why is this old Java EE 5 used to this project?”.

As of today, the latest version of Java is Java EE 1.7, which offers a wealth of tools. 

The answer is very easy; the use of this technology is closely dependent on 

WebSphere Server Application architecture. This WebSphere Server Application in 

version 7 does not support a higher version of Java EE than 1.5. More about this 

technology is described in the following subchapter. 

FIGURE 2: Multitiered applications



9

2.3 WebSphere 2.3 WebSphere SServer erver AApplication v 7.0 introductionpplication v 7.0 introduction

A necessary component for software developers in the world of web business 

applications are servers on which the developed applications are installed.

Very popular solutions are offered by IBM in their products. One of them is the 

WebSphere Application Server. This is a cross-platform family, which can runs on 

from laptops up to the largest mainframe computer. This distributed platform which is 

based on single process model and also contains the Java Virtual Machines (JVMs) 

provides a powerful application server to deploy. The base logical application servers 

are executing on multiple JVMs, and each is executing in different address spaces, 

which are called Servant Regions (SR).In FIGURE 3 is presented the concept of 

logical architecture.

The basic concept of this architecture consists of one control region on one application

server. The Servant Regions are statically defining and also there exists a possibility of

adding new Servant Region. The limits of amount Servant regions are defined by 

available physical memory on the system. The main task of the control region is to 

take responsibility for incoming connections, which are dispatching to the request in 

Workload Manager (WLM) queues using their own JVM. The WLM queue stores 

information for further processing. This WLM uses FIFO (first-in-first-out) 

mechanism to represent a service class.

FIGURE 3: Architecture of application server



10

In the next step, the appropriate information goes to Servant Region, and also one 

Servant Region can serve to be one service class. Therefore, the Servant Region is a 

component of the application server. Here the application runs and other issues like 

transactions, EJB and Web container are processed in the instance of a JVM. 

(Sadtler et al. 2009)

2.4 About frameworks used in the application2.4 About frameworks used in the application

This sub-chapter contains information about all used frameworks in the project. Each 

framework has its different purpose. Often, these all have similar requirements and the

tasks to be solved become easier. The time saved by developers by the use of the 

framework makes the cost of creating applications lower because functions that would

normally have to be implemented by a programmer are already created within a 

framework in this project among others the used open source frameworks are such as:

1. Spring 

2. Vaadin

3. Hibernate

FIGURE 5: Vaadin logo

FIGURE 6: Hibernate logo

FIGURE 4: Spring logo



11

2.4.1 Spring2.4.1 Spring

This framework created by Rod Johnson is open-source. The main objective of the 

creation of this framework was to facilitate the creation of enterprise applications. 

Spring is often referred to as a lightweight framework for building enterprise 

applications. The package for entire Spring framework is arranged in a single JAR 

file, whose the size of which does not exceed 1 MB. Inversion of Control (IoC) is the 

basis for the core of the framework. This technique manages objects in such a way 

that their dependencies are given passively instead of looking for or creating 

dependencies for objects. This behaviour is called Dependency Injection, because 

injection of dependencies is done at runtime.

(Harrop & Machacek, Pro Spring, 2005)

The structure of the Spring framework is divided in to seven well-defined modules. 

In FIGURE 7 are presented the modules which give everything needed to develop 

enterprise applications. Each module is an independent tool.

All Spring modules are built over the core container. This container defines a set of 

beans which creates, manages and configures and provides the fundamental 

functionality. Here is localized BeanFactory, a pattern that applies IoC.

FIGURE 7: The Spring framework modules



12

Spring's AOP module supports aspect-oriented programming. This module serves 

as a basis, but also provides support from other AOP frameworks. The Spring AOP 

module also allows using annotations to its own code source instructions.

Object/relational mapping (ORM) module in Spring framework provides hooks into 

ORM solution of other frameworks such as Hibernate, iBATIS SQL Maps and JDO. 

Application context module extends the concept of BeanFactory. This module 

supplies enterprise services, JNDI access, EJB integration, remoting, email and 

scheduling. Among other things, this module provides a support for 

internationalization of application life-cycle events, messages and validation.

Web Context and Utility module provide a proper context for web-based applications 

and support web-oriented tasks such as among others programmatic binding of request

parameters and transparently handling multi-part request.

JDBC abstraction and the DAO module simplify the process of writing the code 

related to business logic, bypassing the process of creating a great deal of boilerplate 

code. That module also supports display of database errors, as understandable 

exception. In addition, it provides transaction for management services.

Spring framework also contains a module which provides full-featured MVC (Model-

View-Controller) template. Developers receive a high level of control over the 

template via the interfaces of the strategy. Also, this module can be easily integrated 

with other MVC frameworks.

(Walls & Breidenbach, Spring in action, 2005)



13

Spring MVC architecture could be divided into a series of layers. These layers 

separate the basic functionality of the application from the user interface to the 

persistence. All other layers are dependent on the Domain Model. MVC basically 

contains five layers of abstraction (see FIGURE 8):

• user interface

• web

• service

• domain object model

• persistence

The main task of the user interface

layer (often referred to as the

View) is to present a front-end for an application. That part renders a generated 

response as a result of response to client requests. The concept consists of the fact in 

the entire chain processing that in this layer the final result for rendering is transferred 

to the client as bytes. The reason why this layer is separated from others is because the

system can process other request with valuable information such as database 

connection. 

Web layer is a layer that fulfils two basic functions. One of them is navigation logic, 

and the other one is to provide and ensure consistency between the service layer and 

HTTP request. Navigation logic provides simple mapping of a single URL to a single 

page. Responsibility of this layer means to move the user to the correct page view, 

maintaining the correct sequence. Web layer also takes responsibility for forwarding 

business exceptions such as the error message for the end user. Spring MVC also 

contains the work flow for processing requests which extend the handled request. 

Spring MVC for this layer provides a rich library with Controller interface, and it has 

a very complex solution where there is a possibility to use work flow.

The service layer provides access to the methods in stateless manner, also it provides a

coarse-grained interface to use for system interactions. Methods represented in the 

service layer are a part of transactional units of work, where the methods executing 

many instructions are performed under a single transaction.

The domain object model contains the most important part of the layered Spring MVC

FIGURE 8: Spring MVC application layers



14

architecture which is the business logic. Business logic is centralized inside POJOs 

(Plain Old Java Objects), which make it possible to use polymorphism and 

inheritance. Spring can also enhance the domain model using AOP.

The data access layer takes responsibility for persistence mechanisms, in order to 

obtain and store data into database. The detached this layers from other has to simplify

the management of data held by the mechanisms in this layer. Spring framework 

provides support for other toolkits like Hibernate, JDBC and IBATIS for all data 

access operations. 

This isolated architecture of modules is aimed to increase testability and reduce 

coupling. Each layer can be easily tested in isolation. Being a separate business logic 

from the view and the transaction layer it allows to focus on each issue separately, 

while maintaining the structure of object-oriented model.

(Ladd with Davison, Devijver & Yates, Expert Spring MVC and Web Flow, 2006)



15

2.4.2 Vaadin2.4.2 Vaadin

In Finnish folklore culture, Vaadin is a mythological creature. This animal spirit was 

part of shamanistic trance. More about this historical creature is explained in the 

Finnish epic poem “Kalevala”. Anyway, Finnish developers introduced this name to 

this project. The story of Vaadin framework started in 2000 in IT Mill. They had a 

desire to create new programming paradigm. The first application was developed in 

2001, which supported the creation of user interface. The library was called Millstone 

Library. The next release of this library took place in 2006 which offered a new 

AJAX-based engine. At the end of 2007 IT Mill Toolkit 5 was released. In this edition 

the user interface was rewritten using Google Web Toolkit. This step allowed for 

developers the use of server-side and client-side. The next opportunity for developers 

was released in this framework under the Apache License 2. At the beginning of 2009 

the next version called Vaadin was released. Also, IT Mill was transformed to Vaadin 

Ltd. In the next year the community of Vaadin boosted very fast. The version of 

Vaadin 7 which is already used in the current project, has changed very much from its 

predecessor. This version is more concentrated on aims like web-orientedness, 

stability and performance particularly in the case of Internet Explorer.

Vaadin is an open source framework for Java web application development. Vaadin 

technology supports server-side and client-side programming models. The client-side 

is located in the view layer and can be extended by using GWT (Google Web Toolkit).

Using this powerful and rich framework allows to concentrate on the application logic

without wasting time on graphic layout. The server-side takes care of communications

between the browser and the server. FIGURE 9 present this communications.

FIGURE 9: Vaadin application architecture



16

The client-side is executed as pure JavaScript, and consequently, other plugins such as

Flash are not needed. Interaction with user interface to the server is done by the low 

level Java-based web server, where all business logic is located. Vaadin implicitly uses

technologies such as AJAX (Asynchronous JavaScript and XML), GWT, CSS 

(Cascading Style Sheets) and SaSS (Syntactically Awesome Stylesheets). Vaadin 

framework has a structure of separated modules, which allows for separate 

development of each.

The user interface is rendered by Vaadin Client-Side Engine. Definitions of rendered 

widgets are located in components on the server-side. FIGURE 10 shows the flow 

between the client-side and server-side.

FIGURE 10: Vaadin Client-Side engine



17

In Vaadin Client-Side the framework exists of two different kinds of built-in widgets. 

These are Vaadin widgets and the others are GWT widgets. Both communicate with 

the server-side using ApplicationConnection. The client-side can easily be 

extended by new widgets written in Java. Between the two sides the serialization of 

component occurs transparently, and it also includes the RPC (Remote Procedure 

Call) mechanism.

Vaadin Server-Side framework is located on the Java servlet side. Code can also be 

ran on the portlet. Vaadin framework offers rich API for developing user interfaces. 

Components communicate transparently with other widgets on the client-side. The 

components of the user interface are implemented by Vaadin UI class. The 

components also contain event listeners in which it is possible to bind this component 

directly to data. The layout of the application can be defined by CSS or SCSS, by 

defining annotations @Theme in the application extends UI class.

FIGURE 11: Server-Side application architecture



18

FIGURE 11 presents the server-side architecture with basic elements: 

• UI – is the abstract class, which should be extended by at least one class 

application. Also, this extended class should override the init() method. UI 

is a kind of a bridge between the web page and part of the application logic. 

This represents a part of the HTML that works on the application side in web 

page. UI is deployed as a Servlet Container as a part of the a Java Servlet. 

Basically, this part is a viewport, connected to a user session, which can be 

associated with other windows.

• Web Page – this object is associated with UI. This part represents the web page

and browser windows. The page object can be easily accessed globally from 

the application by using Page.getCurrent() method.

• Vaadin Session – object stores the session of a current user in the application. 

The session starts when the first UI of Vaadin application is initialized. The 

end of the session occurs when the session expires or is completed.

• User Interface Components – are created under the instance of an application. 

These components are hierarchically laid out in the structure where layout root

on the top of hierarchy is contained. User interaction causes events that are 

captured by these components. 

• Events and Listeners – are interfaces whose mechanisms allow to register the 

events.

• Themes – are section that is responsible for presenting what has been defined 

in the CSS or the SCSS. This presentation part is separated from the logic of 

application.

• Data Binding – is a process in which the values are bound directly with the 

component. Items such as tables or lists can be easily bound with data source 

collected in a container.



19

• Resources – are additional items that can be displayed by the user interface, 

such as images are content for download. All these items can, be external or 

internal, because they are handled as resources by Vaadin. In FIGURE 12 are 

presented two interfaces: Resource and ConnectorResource which are 

provided by a servlet.

Vaadin framework is based on the most common three-layer architecture:

• User Interface (presentation) layer

• Domain layer

• Data store layer

Like any similar technology, it is characterized by the same features; in the 

presentation layer located on the top of architecture is the end-view for user, in the 

domain model is the defined business logic of application. Vaadin framework provides

a direct bind user interface with the data source. The domain logic of enterprise 

solutions used by Java EE and Enterprise JavaBeans is located in the Domain Layer. 

Data from this layer are persisted by containers which are bound with Data Access 

Layer. FIGURE 13 shows the concept of this architecture.

(Grönroos, Book of Vaadin, 2013)

FIGURE 12: Resource interface

FIGURE 13: Three-layer architecture



20

2.4.2.4.33  HibernateHibernate

Hibernate is a framework for the Java language which provides transparent 

persistence for POJOs, however, to understand what Hibernate is one needs to know 

what persistence is.

Persistence is a fundamental concept for developing an application which uses an 

infrastructure layer. Persistence in Java stores data in a relational database, beyond the

scope of the JVM and it can also be re-created at a later time.

Hibernate is a project that focuses on solutions for the problem of managing 

persistence of data. This facility allows that developers do not need to care about the 

business logic. This framework provides mapping for an object-oriented domain 

model to a relational database. Problems with object/relational paradigm mismatch are

solved in that framework.

The applications architecture using Hibernate in business layer can be divided into 

two layers, Business Layer and Persistence Layer. In FIGURE 14 is presented the 

concept of architecture with the use of Hibernate in an application.

FIGURE 14: Application architecture with Hibernate API



21

CRUD (Create, read, update and delete) operations are performed by interfaces which 

include Session, Transaction and Query.

Application infrastructure interfaces contain the Configuration class, which 

includes the Hibernate configuration.

Interceptor, Validatable and Lifecycle so called Callback interfaces, 

allow the application to react on events ongoing in Hibernate.

IdentyfierGenerator, UserType and CompositUserType, are interfaces 

responsible for mapping functionality. 

(Bauer & King, Java Persistence with Hibernate, 2007)

2.5 JSP technology2.5 JSP technology

JSP, otherwise called JavaServer Pages is a technology which allows easily creating 

and also maintaining web content for dynamic web pages. JSP is a family of Java 

technology, which provides rapid development of web applications. JSP page is 

nothing more than a text document which contains two different types of data: 

• static data usually expressed such as HTML, SVG, WML or/and XML

• JSP elements, which build dynamic construction of web application.

This technology separates the layer of presentation (user interface) from generation of 

content, such as in FIGURE 15.

FIGURE 15: JSP layer separation



22

2.6 Enterprise JavaBeans2.6 Enterprise JavaBeans

Enterprise JavaBeans (EJB) is a part of Java EE and provides services such as 

transactions, persistence, distribution, security, multiple access, and so on. This 

technology runs on the server-side as components called beans. EJB components are 

embedded into container on the server application (EJB container) which provides 

them to perform locally or remotely.

The idea of EJB contains three main types of EJB beans:

1. Session EJB like Singleton, Stateless and Stateful session beans.

Because the client does not have direct access to the EJB, it uses the proxy to 

connect with the container instead. The proxy creates a request with reference 

that is a delegate to the correct instance and returns the appropriate response. 

The example is illustrated in FIGURE 16.

Stateless session EJB is a business object which is not associated, which means

that the instance is limited to one client at a time, and access to this EJB is 

disallowed during this associating. This process provides thread-safe session. 

Stateful session EJB is totally different than the Stateless session EJB, because 

a proxy object is running in isolated session context, and another session does 

not affect the other one.

Singleton session EJB is a business object which has a shared state in entire 

the JVM. The instance of a singleton bean is controlled by the container.

FIGURE 16: Delegating object during EJB session



23

2. Message-driven EJB

Message-driven EJB is a business object which listens to the consumed 

messages and can execute them directly or pass them to further processing 

within the EJB (see FIGURE 17). Message-driven beans provide other 

messaging protocols, among others asynchronous and synchronous. 

Differences between message-driven beans and session are ways to calling 

methods and messaging.

3. Entity EJB

The main goal of Entity EJB is “to express an object view of resources stored 

within a Relational Database Management System (RDBMS)—a process 

commonly known as object-relational mapping”. In FIGURE 18 is illustrated 

the task of EntityManager which supplies container service that synchronizes 

with database changes during the tracking state.

(Lee & Burke, Enterprise JavaBeans 3.1, 2010)

FIGURE 17: Listener of events in message-driven bean

FIGURE 18: EntityManager which mapping POJO object state with persisting to database



24

3 INTEGRATION3 INTEGRATION

3.1 Structure of existing project3.1 Structure of existing project

Before attempting to describe the process of integration, acquaintance with the 

architecture of existing, large business applications is integral part. All technologies 

presented in the theoretical part form a unity in this project. This chapter focuses more

on the MVC structure in application. Entire application is launched on own servlets. 

Data for end users is displayed in JSP files. Requests are moved to flows, where 

values are passed to processing. Dispatcher servlet is responsible for request mapping 

and Controller forwards the request to model class. In FIGURE 19 is presented the 

basic concept of Spring MVC flow. The communication between the database layer 

and the model classes is done by Hibernate.

FIGURE 19: Flow diagram in application



25

3.2 Structure of Vaadin framework int3.2 Structure of Vaadin framework integrationegration

The mechanism of action in a Vaadin application is very similar to that of a Spring-

based application, considering the data flow. In the presentation layer, Vaadin page 

sends a JavaScript request in the JSON format to the component. In the next step, the 

component communicates with a servlet through UIDL. Servlet serves as a kind of 

bridge between the model classes and the end view. FIGURE 20 shows a simplified 

mechanism of action in the project's Vaadin application.

In the FIGURE 21 basics of Vaadin framework injection into legacy application are 

presented. The idea of this integration is to keep the behaviour of all the properties of 

the previous applications that offer Spring framework. To do so it is necessary to 

create a separate servlet for Vaadin that provides all the functionality of this 

framework. 

A more detailed diagram of the structure of integration is in Appendix 1: Architecture 

of integration Vaadin framework into Spring MVC.

FIGURE 20: The data flow for the implementation of Vaadin



26

However, several different scenarios of usage need to be considered. The first of these 

is when a developer wants to create a page independent from other project pages. For 

this purpose, a pure Vaadin page must be created and embedded in the JSP page. This 

is the simplest case, which does not require more interference in Spring framework 

(see FIGURE 22).

FIGURE 22: Example of placement embedded Vaadin page in JSP page

FIGURE 21: Architecture of integration Vaadin framework into Spring MVC



27

Another example might be a call from the Vaadin other pages which are contained in 

the project and will store the value for page from which they are called. It looks like 

the Vaadin page calls the JSP page on the Spring side, which performs an operation 

and returns the value for the Vaadin page as has been illustrated in FIGURE 23.

Another case which is a special case of the first, when developer wants to call the JSP 

page Vaadin. Creating subpages this way is easier because the programmer does not 

need to focus on the structure of the JSP file - only on the Java source code. It can be 

pure Vaadin page and also can be embedded page. For the lower layers of the 

application as Domain and Data Access to Vaadin and Spring use the same object 

class. Sometimes, however, in addition needs to set the property for Hibernate, if it is 

not defined in the relevant files with the properties. Returning to Appendix 1: 

Architecture of integration Vaadin framework into Spring MVC, an important factor 

which revealing is a servlet on Vaadin side. Construction of servlet is done, when 

created and initialized applications on the server. Behaviour of this servlet is like 

normal the life cycle of a servlet. This servlet calls the main class of Vaadin UI, which 

is listener of request. When this class get proper request, generates right page for the 

view.

FIGURE 23: Example of placement embedded Vaadin page in JSP page, which

invoke other pages for getting proper values



28

3.3 Environment settings3.3 Environment settings

3.3.1 Overview3.3.1 Overview

In this sub-chapter called "Environment settings" the fundamental steps to start 

creating Vaadin UI applications inside existing large business application are 

presented. The basic steps for Vaadin framework integration are described in the 

following sections:

• 3.3.2 Maven configuration for Vaadin integration

• 3.3.3 Servlet configuration

• 3.3.4 Class resolver implementation

• 3.3.5 Spring injection inside Vaadin framework

3.3.3.3.22 Maven  Maven configuration configuration for Vaadin integrationfor Vaadin integration

Highly facilitating the process of developing business applications is using a software 

build automation tools such as Maven. This tools provide a rich development 

infrastructure. The concept is based on a Project Object Model (POM) which may , 

among others: compilation, testing, documentation, collaboration and reporting are 

part of Maven tool. Behaviour of application that uses Maven is customized in the 

POM, which is stored in pom.xml.

The basic settings for Vaadin:

<repository>
<id>vaadin-addons</id>
<url>http://maven.vaadin.com/vaadin-addons</url>

</repository>



29

This is an optional setting in the project because the project uses its own repository 

that already has nested this server.

<repository>

<id>central</id>
<name>Nexus mirror</name>
<url>http://nexus.descom.fi:8081/nexus/content/groups/public</url>
<releases>

<enabled>true</enabled>
</releases>
<snapshots>

<enabled>true</enabled>
<updatePolicy>always</updatePolicy>

</snapshots>
</repository>

The next step is an add required Vaadin libraries.

<!-- Vaadin -->
<dependency>

<groupId>com.vaadin</groupId>
<artifactId>vaadin-server</artifactId>
<version>7.0.4</version>

</dependency>

<dependency>
<groupId>com.vaadin</groupId>
artifactId>vaadin-client-compiled</artifactId>
<version>7.0.4</version>

</dependency>

<dependency>
<groupId>com.vaadin</groupId>
<artifactId>vaadin-client</artifactId>
<version>7.0.4</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>com.vaadin</groupId>
<artifactId>vaadin-themes</artifactId>
<version>7.0.4</version>

</dependency>

<dependency>
<groupId>com.vaadin</groupId>
<artifactId>vaadin-client-compiler</artifactId>
<version>7.0.4</version>
<scope>provided</scope>

</dependency>



30

The required libraries are:

• The library vaadin-server-7.0.4.jar is a part responsible for developing server-

side. This library is associated with two other libraries in the vaadin-themes 

and the vaadin-shared.

• The library vaadin-client-compiled-7.0.4.jar contained a precompiled Client-

Side Engine of Vaadin framework. If application using compiled widgets, 

deploying this library is not necessary.

• The library vaadin-client-7.0.4.jar is a part responsible for developing client-

side, which including basic Vaadin-specific widgets and GWT API. The library

vaadin-client-compiler is required to compile client-side modules. If is used 

only precompiled Client-Side Engine, deploying this library is not 

recommended.

• The library vaadin-shared-7.0.4.jar contains shared functions to development 

for both the server and client side.

• The library vaadin-themes-7.0.4.jar is required for basic use of custom CSS 

themes. This library also provides custom SASS themes.

• The library vaadin-client-compiler-7.0.4.jar compiles Java-to-JavaScript. This 

library is needed for building client-side modules.

(Grönroos, Book of Vaadin, 2013)



31

After adding the necessary dependencies, the next step is to set the plugin to build the 

widget. The correct plugin should be set as below:

<!-- Compile custom GWT components or widget dependencies with the GWT 
  compiler. Compilation is invoked by running 'mvn gwt:compile'. There is no 
  need to compile the widget sets unless they are changed. -->
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>gwt-maven-plugin</artifactId>
<version>2.5.1</version>
<configuration>

<webappDirectory>
${basedir}/src/main/webapp/VAADIN/widgetsets

</webappDirectory>
<extraJvmArgs>-Xmx1024M -Xss1024k</extraJvmArgs>
<runTarget>xyz-web</runTarget>
<!-- Plugin should find the modules on its own <modules> 

</configuration>
</plugin>

Compiling widgets can take place in two ways, either by defining it properly in 

Maven or by compiling in the console. 

To compile needs to use : $ mvn gwt:compile -P<profile_name> 

The compile process is time consuming, and the averages machine, it can take a few 

minutes.

3.3.3.3.33 Servlet configuration Servlet configuration

Any application that uses Vaadin framework, must have at least one servlet. In this 

project, is needed to use a custom servlet that would extend the class of 

VaadinServlet

package com.vaadin.server;

/**
 * This class is a representation of the configurable servlet, extended
 * by VaadinServlet.
 * 
 * @author ext-mszczygi
 * 
 */
public class XyzVaadinServlet extends VaadinServlet {

/**
 * Default serial version UID.
 */
private static final long serialVersionUID = 1L;

}



32

The body of the class is empty, but the process of extending this servlet is necessary 

for proper operation of application. Also, here is possibility of define own methods for

this servlet.

Deployment descriptor is the main configuration file for the Web application. This is 

an XML file named web.xml, which is placed directly in the WEB-INF directory. At 

that file is defined descriptor for custom Vaadin servlet class. There is defined URL 

address of servlet. This servlet handles the HTTP request. In this initialization of 

servlet, are needed parameters such as: 

• The main class of view, extending UI.

• Parameter for Bean System Messages.

• The GWT class, which contains settings for widgets.

Below is a piece included the deployment descriptor to the issue of integration.

<!-- Vaadin servlet -->
<servlet>

<servlet-name>Vaadin Application Servlet</servlet-name>
<servlet-class>com.vaadin.server.XyzVaadinServlet</servlet-class>
<init-param>

<description>Vaadin UI to display</description>
<param-name>UI</param-name>
<param-value>com.xyz.vaadin.VaadinResolverViewUI</param-

value>
</init-param>

<init-param>
<param-name>systemMessagesBeanName</param-name>
<param-value>DEFAULT</param-value>

</init-param>

<init-param>
<description>Application widgetset</description>

<param-name>widgetset</param-name>
<param-value>com.xyz.vaadin.AppWidgetSet</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>Vaadin Application Servlet</servlet-name>
<url-pattern>/public/vaadin/*</url-pattern>

</servlet-mapping>



33

33.3..3.44 Class resolver implementation Class resolver implementation

This is the class, which is loaded as the main class in the deployment descriptor 

(web.xml). In VaadinResolverViewUI is presented the core of resolving name to class. 

The snippet below shows the class.

@Theme("descomtheme")
@Title("VaadinResolverViewUI")
public class VaadinResolverViewUI extends UI {

private static final long serialVersionUID = -2892523868922028481L;
private String pathInfo;

public String getPathInfo() {
 return pathInfo;

}

@Override
protected void init(VaadinRequest request) {

this.pathInfo = request.getPathInfo();
initView(this.pathInfo);

}

public void initView(String pathInfo) {
VaadinClassLoader.componentResolve(pathInfo, this.getUI());

}

public void setPathInfo(String pathInfo) {
this.pathInfo = pathInfo;

}
}

In method init(), which is called just after the constructor is defined method 

responsible for generating the proper view. Before this method is called the function 

that gets from VaadinRequest the name of path mapping. This is a very important 

process, because the value is passed to the method of generation view (initView(String 

pathInfo)). Inside this method is invoked static method in VaadinClassLoader class. The 

source code of this class is in snippet.



34

public class VaadinClassLoader {

public static final String SAMPLE_PAGE = "/samplePage";
public static final String VAADIN_TEST = "/vaadinTest";

public final static CustomComponent componentResolve(String
className, UI parent) {

CustomComponent component = null;

if (SAMPLE_PAGE.equals(className)) {
component = new SamplePageUI(parent);

}

if (VAADIN_TEST.equals(className)) {
component = new VaadinTestUI(parent);

}

return component;
}

}

This static method compares the path mapping with patterns. If method finds proper 

path mapping, then generates the right view. Necessary step is send the reference of 

VaadinResolverViewUI to the proper view. This is needed to set up content inside that 

class.



35

3.3.3.3.55  Spring injectionSpring injection inside Vaadin framework inside Vaadin framework

An inseparable element to use Spring classes to perform the injection is need create 

special class which will do that. The first step is to define the ApplicationContext, 

which will be in the child class has set SpringContextHelper for VaadinServlet. First of 

all is necessary setting listener for ContextLoaderListener in web.xml 

<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

However, to be able to use Spring in application which using Vaadin, is needed to 

define in the Maven file (pom.xml) following dependencies:

<!-- SPRING -->
<dependency>

groupId>org.springframework</groupId>
<artifactId>spring-core</artifactId>
<version>3.2.2.RELEASE</version>
<type>jar</type>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>3.2.2.RELEASE</version>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-beans</artifactId>
<version>3.2.2.RELEASE</version>

</dependency>



36

To get access to Spring managed beans is need create a helper class. This class will get

the relevant session information.

import javax.servlet.ServletContext;
import org.springframework.context.ApplicationContext;
import org.springframework.web.context.support.WebApplicationContextUtils;

public class SpringContextHelper {

/**
 * Application context.
 */
private ApplicationContext context;

/**
 * Constructor.
 * 
 * @param servletContext
 */
public SpringContextHelper(ServletContext servletContext) {

context = 
WebApplicationContextUtils.getRequiredWebApplicationContext(servletContext);

}

/**
 * Get bean.
 * 
 * @param beanRef
 * @return the context of bean
 */
public Object getBean(final String beanRef) {

return context.getBean(beanRef);
}

}

The easiest way to get this context for Vaadin application, is create method which will 

gets this ApplicationContext inside class which needs it use.

/**
 * Spring context helper.
 */
private SpringContextHelper helper;

/**
 * Initialise Spring Context Helper.
 */
private void initSpringContextHelper() {

helper = 
    new SpringContextHelper(VaadinServlet.getCurrent().getServletContext());
}



37

3.4 Integration into Spring MVC3.4 Integration into Spring MVC

In this subchapter will show you an example of integration Vaadin application in 

already existing legacy application. It is a process that applies to various parts of the 

project to make a proper integration which is due to pre-set the environment as shown 

in 3.3 Environment settings.

First of all,it is necessary to define the bean in XML file for sample JSP file.

<bean classtype="com.xyz.web.component.MenuComponent">
<set-property property="resourceKey" value="page.vaadinTest"/>
<set-property property="internalUrl"
value="/public/controller/vaadin/vaadinTest" />
<set-property property="role" value="ROLE"/>

</bean>

<definition name="vaadinTest" extends="adminBase">
<put-attribute name="selected" value="page.vaadinTest"/>
<put-attribute name="content-main"
value="/WEB-INF/jsp/settings/vaadinTest.jsp"/>

</definition>

An example JSP file is located in "/WEB-INF/jsp/settings/vaadinTest.jsp". Vaadin 

application is embedded in this file and the latter part of this chapter explains the 

structure of the file. There is also a set mapping for that JSP file in the bean. 

"/public/controller/vaadin/vaadinTest" this mapping will redirect to the correct JSP file 

located under that directory "/WEB-INF/jsp/settings/vaadinTest.jsp".

To get a request mapping additional controller class is needed. By adding @Controller 

annotation to class, then serves the role of controller. This allows avoiding the 

reference to the Servlet API. Before adding this, an annotation is required to be set up 

in webflow.xml component-scan and the base-package to be set.

<!-- Scan all classes in base-package and look for @Component or @Service 
annotations. If such an annotated class is found, automagically instantiate 
a bean out of it. -->

<context:component-scan base-package="com.xyz" />

<mvc:annotation-driven conversion-service="mvcConversionService" />



38

The dispatcher will be scan the annotated class and detecting @RequestMapping 

annotations. An example of controller class is presented in the snippet:

@Controller
@RequestMapping(value = "/vaadin")
@RolesAllowed("ROLE")
public class VaadinController {

@Autowired
private DomainObjectService domainObjectService;

/**
 * @return the domainObjectService
 */
public DomainObjectService getDomainObjectService() {

return domainObjectService;
}

/**
 * @param domainObjectService
 *            the domainObjectService to set
 */
public void setDomainObjectService(DomainObjectService 

domainObjectService) {
this.domainObjectService = domainObjectService;

}

@RequestMapping(value = "/vaadinTest")
public String viewVaadinTestPage() {

return "vaadinTest";
}

}

To map URLs is used @RequestMapping annotation like @@RequestMapping(value = 

"/vaadinTest") and refers to a particular handler method, however, it can also refer to an

entire class. Typically these annotations map HTTP requests such as GET or POST 

inside the controller.



39

The next step is to create a sample class, demonstrating the integration of the Vaadin 

into existing application.

/**
 * 
 * Test class, created for the purpose of demonstration.
 * 
 * @author ext-mszczygi
 * 
 */
@SuppressWarnings("serial")
public class VaadinTestUI extends CustomComponent {

/**
 * Variable keeping reference to parent.
 */
private UI parentReference;

/**
 * Constructor for VaadinTest, which initialise all Component. After call this 
 * method, setParentReference() is need.
 */
public VaadinTestUI() {

...
}

/**
 * Constructor for VaadinTest, which initialise all Component.
 * 
 * @param parent
 */
public VaadinTestUI(UI parent) {

setParentReference(parent);
initLayout();

}

/**
 * @return the parentReference
 */
public UI getParentReference() {

return parentReference;
}

/**
 * Initialise layout.
 */
private void initLayout() {

// Creates vertical part of layout
...
parentReference.setContent(layout);

}

/**
 * @param parentReference
 *            the parentReference to set
 */
public void setParentReference(UI parentReference) {

this.parentReference = parentReference;
}

}



40

To get the bean inside this class configuration explained in 3.3.5 Spring injection 

inside Vaadin framework is needed. For defined SpringContextHelper, it is possible to 

get a bean, for example "staticService" like that:

/**
 * @return the staticService
 */
public StaticService getStaticService() {

return staticService = (StaticService) helper.getBean("staticService");

} 

For VaadinResolverViewUI class to render the appropriate class, is needed define the 

path pattern in VaadinClassLoader class. Mapping patterns are compared as a String. 

When the proper pattern is found, creates a new object of this class and is passed the 

reference of this VaadinResolverViewUI class in order to set the appropriate view.

public static final String VAADIN_TEST = "/vaadinTest";

...
if (VAADIN_TEST.equals(className)) {

component = new VaadinTestUI(parent);
}

The final step is to embed Vaadin applications in JSP file. The file named 

vaadinTest.jsp should contains this elementary issues:

• Set up the page header

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=9;chrome=1" />
<title>Vaadin Integration</title>

</head>

The embedded UI application inside JSP file should conform to the standard 

XHTML. Encoding for characters must be set to UTF-8. For better 

compatibility meta declarations can be set.



41

• Contains the vaadinBootstrap.js

<!-- Loads the Vaadin widget set, etc. -->
<script type="text/javascript" src="/xyz-web/VAADIN/vaadinBootstrap.js"> 
</script>

The vaadinBootstrap.js boots up UI application. This script should be called 

before initialization UI. The source path for vaadinBootstrap.js should be 

relative.

• Includes a GWT history frame

<!-- GWT requires an invisible history frame. -->
<!-- It is needed for page/fragment history in the browser. -->
<iframe tabindex="-1" id="__gwt_historyFrame" style="position: absolute; 

width: 0; height: 0; border: 0; overflow: hidden" src="javascript:false">
</iframe>

GWT needed an invisible history for tracking the page history.

• Defines <div> for Vaadin application

<!-- So here comes the div element in which the Vaadin -->
<!-- application is embedded. -->
<div id="vaadinTest" class="v-app">

<!-- Optional placeholder for the loading indicator -->
<div class=" v-app-loading"></div>

<!-- Alternative fallback text -->
<noscript>You have to enable javascript in your browser to use an 

application built with Vaadin.
</noscript>

</div>

• The UI application will be embedded into this html element. Also, this element

must contain unique id in the page. In addition, should contain three more 

elements:

javascript:false


42

1. In <div> must be define v-app style class.

2. Inside <div> elements should be defined nested <div> element, which 

contain v-app-loading style class. This item is just to indicate the 

loading status of UI application.

3. Required is also <noscript> element, which contains informations 

about an unsupported JavaScript by browser.

• Script initializes the Vaadin UI

<script type="text/javascript">//<![CDATA[
if (!window.vaadin)
alert("Failed to load the bootstrap JavaScript: "+
"VAADIN/vaadinBootstrap.js");

The UI application is rendered after calling method vaadin.initApplication(). 

Before calling that method, should be checked if the vaadinBootstrap.js was 

loaded properly.

/* The UI Configuration */
vaadin.initApplication("vaadinTest", {
"browserDetailsUrl" : "/xyz-web/public/vaadin/vaadinTest",
"serviceUrl": "/xyz-web/public/vaadin/",
"widgetset" : "com.xyz.vaadin.AppWidgetSet",
"theme": "descomtheme",
"versionInfo" : { "vaadinVersion" : "7.0.4" },
"vaadinDir": "/xyz-web/VAADIN/",
"heartbeatInterval": 300,
"debug": true,
"standalone": false,
"authErrMsg": {

"message": "Take note of any unsaved data, "+
"and <u>click here<\/u> to continue.",
"caption": "Authentication problem"
},

"comErrMsg": {
"message": "Take note of any unsaved data, "+
"and <u>click here<\/u> to continue.",
"caption": "Communication problem"
},

"sessExpMsg": {
"message": "Take note of any unsaved data, "+
"and <u>click here<\/u> to continue.",
"caption": "Session Expired"
}

});//]] >
</script>



43

The vaadin.initApplication() method takes two parameters.

1. The UI identifier, the same as the unique in <div> element.

2. Associative map that contains the following parameters:

• "browserDetailsUrl" – This parameter must set the URL path, which 

should point to the Vaadin servlet.

• "serviceUrl" – This parameter is need to communicate by UIDL. The

value of this parameter should be set the same as at 

<servlet-mapping> for Vaadin UI in web.xml.

• –"widgetset" – This parameter must be define exact class name for 

widgets. The extension of .gwt.xml need be omitted. If any specific 

widgets are not used, default widget set set can be 

com.vaadin.DefaultWidgetSet.

• "theme" – The parameter sets theme for UI application. The theme 

can be custom or built-in (runo, chameleon or reindeer).

• "versionInfo" – This parameter contains the associative map. The 

parameters for this map are optional, but contain the number 

version of currently using Vaadin version.

• "vaadinDir" – Path to VAADIN directory. Location is relative to the 

URL address, where is located embedded page.

• "heartbeatInterval" – This parameter sets the message sending 

frequency, preventing session time-out.

• "debug" – Specifies whether the window debugging is enabled.

• "standalone" – Usually this parameter should be set as false. This 

defines whether the UI application is generated in the browser 

window or another context.



44

• "authErrMsg" – The parameter defines authentication error. This 

parameter contains an associative map with two key-value pairs: 

message and caption.

• "comErrMsg" – The parameter defines communication error. This 

parameter contains an associative map with two key-value pairs: 

message and caption.

• "sessExpMsg" – The parameter defines error for session expiration. 

This parameter contains an associative map with two key-value 

pairs: message and caption.

(Book of Vaadin, Marko Grönroos, 2013)

An example configuration of the entire embedded page is in Appendix 2: Example 

code of embedded Vaadin UI in JSP file.



45

3.5 3.5 Calling Spring pages from the Vaadin pageCalling Spring pages from the Vaadin page

Using already created items that exist in the project, is a very common thing. Use of 

Spring components in situation as shown in FIGURE 23 on the page 27 is an 

inevitable process. To be able to call up the Spring page from the embedded Vaadin 

page is necessary to send a request to webflow. In Vaadin page of UI need to add:

EditLink edit = new EditLink("/xyz-web/sample-flow.xyz?
_eventId=editSomething&elementId=" + element.getId() + "&vaadin=true");

Class for EditLink is attached in Appendix 3: Source code of EditLink class.

Next step in sample-flow must be set correct scopes for obtained values.

<on-start>
<set name="flashScope.samplePageId"
         value="requestParameters.elementId"/>
<set name="flowScope.vaadin" value="requestParameters.vaadin"/>

</on-start>

Also is required set up proper <decision-state> for <subflow-state>:

<decision-state id="decideEditSomething">
<if test="requestParameters._eventId == 'editSomething'"
     then="editSomething" else="..."/>

</decision-state>

…

<subflow-state id="editSomething" subflow="editsomething-flow">
...
</subflow-state>

In the next step, the view will be transitioned to the editSomething.jsp page. Inside this 

file different activities can be made. Also, this JSP file contains its own webflow. The 

following are settings for this webflow file:

<on-start>
<set name="flowScope.vaadin" value="requestParameters.vaadin"/>

</on-start>

<decision-state id="decideSelect">
<if test="flowScope.vaadin == 'true'" then="selectVaadin" else="select"/>

</decision-state>

<view-state id="selectVaadin" 
view="externalRedirect:contextRelative:/public/controller/vaadin/samplePage/
selectSample?elementId=${flowScope.elementId}&amp;elementId=
${flowScope.selectedElementId}"/>

After the appropriate executions, view back to the embedded Vaadin page.



46

4 4 CONCLUSIONSCONCLUSIONS

The subject of this thesis was to show the possibility of integration Vaadin framework 

and reduction effort of developers work in creating new features. The process of this 

integration allows the introduction of additional features for the project, which was 

not possible to create in the Spring framework without the use of additional 

framework for the presentation layer. In practice, for a similar solution was used in the

project Dojo toolkit. However, in comparison with the Vaadin framework, the process 

of implementation of the solution take place at the level of the JSP file and not, as is 

the case of Vaadin, in java source files.

The ability to embed elements on the web page, provides component development for 

project, thus making it faster to develop applications. For developer who previously 

used Spring MVC for creating pages and subpages, it can be noted how to reduce the 

file declaration. Usually, developers must create JSP file, webflow and sometimes 

controller. In the case of Vaadin, it is a single file, without the template that is 

embedded inside the JSP file.

However, the advantages and disadvantages of using this framework in the project 

need also to be taken into account.

TABLE 1: Advantages and Disadvantages of using Vaadin in the project.

ADVANTAGES DISADVANTAGES

Vaadin allows for development both 

on server- and client-side.

JavaScript-based components make 

the resulting HTML code heavy and 

the styling more complicated.

Time to create new functions is 

reduced significantly; developers do 

not have to, for example, create files 

necessary as while using Spring MVC

(xml, flow, JSP page, etc.). Instead, 

everything is done in Java and 

optional CSS.

Developers need training in a different

than previous technology; training and

time costs.



47

Scalability of solutions. Some project features will be 

rewritten in Vaadin technology, which

essentially make them more costly.

Good documentation and highly 

active user base.

Professional support from Vaadin 

creators.

Many ready-to-use components and 

addons.

Easy integration with other 

frameworks like Spring and 

Hibernate.

Support for all modern browsers.

Using native open source software 

has a positive impact on its growth 

and development.

Fast and stable solution, albeit 

relatively young.

Vaadin has a great Eclipse plugin, 

which saves a great deal of 

developer’s time and work.

Specialized in UI widgets for mobile 

devices.

As can be seen there are plenty of advantages, thus the implementation of this 

integration to existing applications it is profitable for both the developer and the client.

The use of Vaadin framework for this application looks promising.



48

REFERENCESREFERENCES

Martin Fowler, 2002,  Patterns of Enterprise Application Architecture, Addison-

Wesley Professional.

Deepak Alur, Jhon Crupi and Dan Malks, 2003, core J2EE Patterns, Sun 

Microsystems Press.

Eric Jendrock, Jennifer Ball, Debbie Carson, Ian Evans, Scott Fordin and Kim Haase, 

2007, The Java EE 5 Tutorial, Sun Microsystem, Accessed on 15 April 2013, 

http://docs.oracle.com/javaee/5/tutorial/doc/

Carla Sadtler, Fabio Albertoni, Leonard Blunt, Micheal Connolly, Stefan 

Kwiatkowski, Thayaparan Shanmugaratnam, Henrik Sjostrand, Saori Tanikawa, 

Margaret Ticknor and Joerg-Ulrich Veser, July 2009, WebSphere Application Server 

V7 Adnministration and Configuration Guide, IBM.

Rob Harrop and Jan Machacek, 2005, Pro Spring, Apress.

Craig Walls and Ryan Breidenbach, 2005, Spring in action, Manning Publications Co.

Seth Ladd with Darren Davison, Steve Devijver and Colin Yates, 2006, Expert Spring 

MVC and Web Flow, Apress.

Marko Grönroos, 2013, Book of Vaadin, Vaadin Ltd.

Christian Bauer and Gavin King, 2007, Java Persistence with Hibernate, Manning 

Publications Co.

Andrew Lee and Bill Burke, 2010, Enterprise JavaBeans 3.1, O'Reilly Media.

Marko Grönroos, 2013, Book of Vaadin, Vaadin Ltd.



49

APPENDICES APPENDICES 

Appendix 1: Architecture of integration Vaadin framework Appendix 1: Architecture of integration Vaadin framework 

into Spring MVCinto Spring MVC



50

Appendix Appendix 22: : Example code of embedded Vaadin Example code of embedded Vaadin UIUI in JSP  in JSP 

filefile

<!-- Loads the Vaadin widget set, etc. -->
<script type="text/javascript" src="/xyz-web/VAADIN/vaadinBootstrap.js"> 
</script>
<!-- GWT requires an invisible history frame. -->
<!-- It is needed for page/fragment history in the browser. -->
<iframe tabindex="-1" id="__gwt_historyFrame" style="position: absolute; 

width: 0; height: 0; border: 0; overflow: hidden" src="javascript:false">
</iframe>

<div id="content-main">

<h3>Vaadin Test Page</h3>

<!-- So here comes the div element in which the Vaadin -->
<!-- application is embedded. -->
<div  id="vaadinTest" class="v-app">

<!-- Optional placeholder for the loading indicator -->
<div class=" v-app-loading"></div>

<!-- Alternative fallback text -->
<noscript>You have to enable javascript in your browser to use an 

application built with Vaadin.
</noscript>

</div>

<script type="text/javascript">//<![CDATA[
if (!window.vaadin)
alert("Failed to load the bootstrap JavaScript: "+
"VAADIN/vaadinBootstrap.js");

/* The UI Configuration */
vaadin.initApplication("vaadinTest", {
"browserDetailsUrl" : "/xyz-web/public/vaadin/vaadinTest",
"serviceUrl": "/xyz-web/public/vaadin/",
"widgetset" : "com.xyz.vaadin.AppWidgetSet",
"theme": "descomtheme",
"versionInfo" : { "vaadinVersion" : "7.0.4" },
"vaadinDir": "/xyz-web/VAADIN/",
"heartbeatInterval": 300,
"debug": true,
"standalone": false,
"authErrMsg": {

"message": "Take note of any unsaved data, "+
"and <u>click here<\/u> to continue.",
"caption": "Authentication problem"
},

"comErrMsg": {
"message": "Take note of any unsaved data, "+
"and <u>click here<\/u> to continue.",
"caption": "Communication problem"
},

"sessExpMsg": {
"message": "Take note of any unsaved data, "+
"and <u>click here<\/u> to continue.",
"caption": "Session Expired"
}

});//]] >
</script>

</div>

javascript:false


51

Appendix Appendix 33: : Source code of EditLink Source code of EditLink clasclasss

/**
 * This class contains the settings for the Link whose behaviour
 * is to remind the edit button.
 * 
 * @author ext-mszczygi
 * 
 */
public class EditLink extends Link {

/**
 * Default serial version UID.
 */
private static final long serialVersionUID = 1L;

/**
 * Constructor for EditLink.
 */
public EditLink() {

setIcon(new ThemeResource("icons/16/edit.gif"));
}

/**
 * Constructor for EditLink.
 * 
 * @param resource
 */
public EditLink(String resource) {

setIcon(new ThemeResource("icons/16/edit.gif"));
setResource(new ExternalResource(resource));

}

/**
 * Constructor for EditLink.
 * 
 * @param caption
 * @param resource
 */
public EditLink(String caption, String resource) {

setIcon(new ThemeResource("icons/16/edit.gif"));
setResource(new ExternalResource(resource));
setCaption(caption);

}

}


	1 Introduction
	2 THEORETICAL BASIS
	2.1 Overview
	2.2 What is a business web application?
	2.2 Java 5 EE and why this old one was chosen
	2.3 WebSphere Server Application v 7.0 introduction
	2.4 About frameworks used in the application
	2.4.1 Spring
	2.4.2 Vaadin
	2.4.3 Hibernate

	2.5 JSP technology
	2.6 Enterprise JavaBeans

	3 Integration
	3.1 Structure of existing project
	3.2 Structure of Vaadin framework integration
	3.3 Environment settings
	3.3.1 Overview
	3.3.2 Maven configuration for Vaadin integration
	3.3.3 Servlet configuration
	3.3.4 Class resolver implementation
	3.3.5 Spring injection inside Vaadin framework

	3.4 Integration into Spring MVC
	3.5 Calling Spring pages from the Vaadin page

	4 CONCLUSIONS
	REFERENCES
	APPENDICES
	Appendix 1: Architecture of integration Vaadin framework into Spring MVC
	Appendix 2: Example code of embedded Vaadin UI in JSP file
	Appendix 3: Source code of EditLink class


